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Abstract

We investigate convergence in a weighted L., norm of Hermite—Fejér, Hermite, and
Griinwald interpolations at zeros of orthogonal polynomials with respect to exponential
weights such as Freud, Erdos, and exponential weight on (—1,1). Convergence of product
integration rules induced by the various approximation processes is deduced. We also give
more precise weight conditions for convergence of interpolations with respect to above three
types of weights, respectively.
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1. Introduction

For a function f: (a,h) >R, — o0 <a<b< oo and a set
T = X1, Xy ooy X}, n=1
of pairwise distinct nodes let H,[y,;f] and H,[y,;f] denote the Hermite—Fejér and

Hermite interpolation polynomials of degree <2n — 1 to f with respect to y,. For the
case of Hermite interpolation, we will always assume that f is differentiable so that

H,[1,:f] is well defined. In fact, H,[y,;f] and H,[y,;f] are the unique polynomials of
degree <2n — 1 satisfying:
Hn[Xan](xjn) :f(xjn)a Hn [Xn;f](xjﬂ) :f(le1)7
H[13./1(x) = 0, H, s /) (5in) = 1" (i)

forj=1,2,...,n.

(1.1)
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Here, we are interested in L, convergence of Hermite—Fejér and Hermite
interpolations with respect to y, whose elements are the zeros of a sequence of
orthogonal polynomials. More precisely, in this paper we consider w(x) :=
exp(—Q(x)), where Q: I — R is even, continuous, and of at least polynomial growth
at the end of interval I and I is either (—1,1) or R. Then y, consists of the zeros

{xjx (W)} of the nth orthonormal polynomial p,(w?, x)
Pu(W?, x) = 7,(W)x" + lower degree terms (7, (da)>0)

with respect to w?, defined by the condition
/p,,(wz,x) (W2 X)W (X) = Oy myn=0,1,2, ... .
I

Then all {xj;,,(wz)}‘]"':1 belongs to I, which we arrange as
xn_r,,(wz) <xn_1,,,(w2) < e <xz‘n(w2) <x1‘n(wz).

Let H,[w?; ] and H,[w?;-] be the Hermite-Fejér and Hermite interpolation operators
with respect to the zeros {x;,(w? )iz of p,(w?; x). Then by (1.1), we have, (cf. [16, p.
330])

Hy[w?£1(x) = Ha w23 ](x) + Hio[w? f](x), (1.2)

where

H, W 7f Zf an Ikn

fmwmm:ii“wb—mwmmm

—l Py (Xkn)
and
H, W £1(x) = Haw?; f1(x) + Hua W3] (x), (1.3)
where
H,ﬂ[M/ Zf xkn .X xk”)lkn()

Here, /i,(x) is the fundamental Lagrange interpolation polynomial [6, p. 23], given
by

pn(W2§ x)
P Xt ) (X — Xjn)’

In(W?3 x) = k=12 ...,n
H,i[w?;] is the so-called Griinwald operator, which is positive, that is,
H,y [w?;f](x)>0 in I when >0 in I.

Our main concern is the following problem: Under what conditions on weight
functions w;(x) and wy(x) will the relation

Tim [[(£(x) — Habws /1)1 () = 0 (1.4)
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hold for all continuous functions f* satisfying limy_, o, o 1 |[fw2(x)| = 07 Lubinsky
[11] proved (1.4) in case

2
wi(x) = d

(14 Q'(x)"(1 + [x[)’

and w(x) is a Freud weight or an Erdds weight. Recently, Szabados [15] has proved
(1.4) in case

w1 (x) =

wa(x) = w?(1+ Q') (1 + |x])?

w2

(1+ |x'7

and w(x) is a Freud weight. In this paper, we will extend Szabados’ result to a class
of Freud, Erdds, and exponential weights on (—1,1), and we also find more precise
weight conditions for these three types of weights. L, (0<p< o) convergence of
Hermite—Fejér and Hermite interpolations, are handled in [3,7] for Freud and Erdos
weights.

Once we have the convergence of interpolations, we can consider the convergence
of the associated product quadrature rules, involving approximation of

Ilksf] = / k() (x) dx

by quadrature rules

wa(x) = w?(1 + Q'(x))

n

Llkif] =Y wulk)f (xp),

=1

where the weights {w;,(k)} are usually determined by integration of some
approximation to f. Here, the kernel k(x) is typically the difficult component of
the integrand k(x)f (x), with known types of singularities or oscillatory behavior and
usually /" has smooth behavior. The product quadrature treated in this paper, is to
approximate I[k;f] by

L[k f] : /k W f] dx_fojn (/k By dx) (1.5)
where

._ pZ(x'n)
hi(x) = {l _p;(x;n)(x - xjn)}liz,,(x).

Analogous rules generated by H, and H,; are

Lk f] = /k Wwif]dx and
Julk; f] ::/Ik(x)H,,l[w if] dx. (1.6)

We shall prove these product quadratures converge to [k, f] under mild conditions
on f(x) and k(x).
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This paper is organized as follows. In Section 2, we introduce our admissible
class of weights and state main results. In Section 3, we present some technical
estimates. In Section 4, we prove the results of Section 2. Finally, in Section 5,
we give more precise weight conditions for Freud, Erdds, and exponential weights on

(—1,1).

2. Main results

We first introduce some notations, which we use in the following. For any two se-
quences {b,}, and {¢,}, of non-zero real numbers (or functions), we write b, <c¢,, if
there exists a constant C >0, independent of n(and x) such that b, < Cc, for n large
enough and write b,~c, if b,<c, and ¢, <$b,. We denote by £, the space of
polynomials of degree at most n. Let I+ be either (0, 00) if I =R or (0,1) if I =
(-1,1).

We now introduce an admissible class of weights.
Definition 2.1. Let wo = exp(—Q) where Q(x):I— R is even, continuous, and

(a) Q"(x) is continuous in /+ and Q”(x), Q'(x)=0 in I+;
(b) the function

Q' (x)
T(x)=1+ , xel+
=100
satisfies for large enough x or x close enough to +1
xQ'(x)
T(x)~ . 2.1
~"503 1)

Moreover, T satisfies either
(bl) There exist A>1 and B>1 such that

A<ST(x)<B,xeR+.

(b2) T is increasing in I+ with limy_ o, T(x)>1. If I = R,

lim T(x)= o0

|x| > 0

and if 7 = (—1,1), for x close enough to +1 and some 4>2,

Then w(x) shall be called an admissible weight and we shall write we .<Z.
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We let a,, for u>0, be the uth Mhaskar-Rahmanov-Saff number, which is the
unique positive root of the equation

u= %/01 a,tQ (ayt) dit/V'1 — 2. (2.2)

Then, q, is increasing with u. The importance of a, lies in the identity

Pl = 1wl |

_aman]
for any polynomial Pe Z2,. We define some auxiliary quantities which we will need in
the sequel. See [8—10]. Set

6= (nT(a) >, n>1, (2.3)

which are useful in describing the behavior of p,,(wz,x) near x;,. For example, for
we.of

L
55717

where L is a positive constant independent of n. We also need the sequence of
functions

|x1n/an - 1|<

max{y/1 - &4 L5, ——A——}, |x|<a,
T(an)r/ k%ﬂlan

Vu(an), x| = an,

P, (x) = (2.4)

which are useful in describing the spacing of zeros of p,(w?,x) and Christoffel
functions.
The followings are our main results.

Theorem 2.2. Let we.o/. Let u(x) and v="(x) be even functions that are non-decreasing
on In (0, o) and for some L>0,

Ay = |1 =[xl fan| + L82) P, )

aylogn

X ||Sn(x)“_1(X)||Lx<\x\<an(1+w”)> T

where
su(x) = Q' (X) V()1 — |x|/an + L3,|">.
Then for a continuous function f : I - R and large enough n>1,

(a) [t [ ST ) S A () (2.5)
(b) [ Ha [, F1 W0, ) S Aullfiv’ull ., 7)- (2.6)

(© [ S1 W20, (1) < (An + DI?ull, ). (2.7)
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(d) If we let

. 1
By = (11 = xl/an| 4+ L62) ol gy =5
then
1Hual?. 1wl 1y S Bal 97 (28)
©  HMAW L, 1) S (Aa+ DIl o) + Bl W, - (29)

Now, we can extend Szabados’ results using Theorem 2.2.

Theorem 2.3. Let we.o/, u(x) = |Q'(x)| + 1, and v(x) = (|x| + 1)~/

(a) For a continuous function f on I satisfying

\xlﬁ‘lgnor 1 If (x)w*(x)| =0, (2.10)
”ani 1(f(x) — Hyu[w*, f](x ))W2||Lx<1) =0.

(b) For a continuous function f on I satisfying

N lim 1 [f (x)w? (x)u(x)| = 0, (2.11)
Tim {[(£(x) = Haw? S ()w? o)l ) = O-
(¢) For a continuous functzonf on I salzsfylng (2 11) and |[f’w2|\L < o0,

Tim {[(7(x) = Hy[w? 1))l ) = O-

Theorem 2.4. Let we.o/ and
Konp(f, W, 1') = inf {H(f PYWI|p i+ CIIPYS W, 0}

where ®,(x) = |1 — |x|/a(£)|"* + T~1%(a(1)) and (1) = inf{ay : a,/u<t}. Then for
any continuous function f on I and xel, we have
|(Hu[w?, f1(x) = f (x))w* ()]
2 Un
< an
S K- lw(f w? n)

@y (x),  |x|<ay
x [ 14 (|1 = |x|/an| + L5,) " logn n .
Tl/z(an)a |X| > az
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For the product integration rules I, I,, and J, defined by (1.5) and (1.6), we can
prove:

Corollary 2.5. Assume that hypotheses of Theorem 2.3 hold. Let k:I—R be
measurable and assume that

/ lk(x)w2v7 1 (x) dx < 0.
I
(a) For a continuous function f on I satisfying (2.11),

Jlim 1 kf) = 16f) = [ k)0 . (2.12)

(b) For a continuous function f on I satisfying (2.11) and |[f"w2|\L%(,) < o0,
lim 7,[k; /] = Ik; f]. (2.13)
n— oo

(¢) For a continuous function f satisfying (2.10) and

/ () w2(x) dx < o0,
1
Jim [k ] = Tk f]-

3. Lemmas

Convergence of interpolation is closely connected to bounds on orthogonal
polynomials and related estimates, which we recall now.
Proposition 3.1. Let we .of.

(a) For n>=1,
|xln/an_1|s(sn (31)

and uniformly for n=2 and 1<j<n—1,

a,
Xjn — Xj+1n "’;n Y, (xjn)- (32)

(b) For n=1,
sup py (|1 =[x/ ~ a1 (33)
XE€
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and

sup [y () () ~ a2 (nT (@) . (34)

(c) Uniformly for n=1, 1<j<n, and xeR,
3/2

dn
i ()]~ = () Ci) (1 = il + L)

Pa(x)
X — Xjn

. (3.5)

(d) Uniformly for n=1, 1<j<n, and xeR,
\ljn(x)\w_l(xj,,)w(x)s 1. (3.6)

(e) Uniformly for u=C and j =0,1,2,
a0V (@) ~uT(a,y 2. (3.7)

(f) Let O<a<fi. Then uniformly for uzC and j =0,1,2,
T(aw)~T(ap.), au~ag, and Q@ () ~ Q(j) (apu)- (3.8)

(g) Uniformly for n=2 and 1<j<n—1,
1= |xjul/an + Loy ~1 — [Xjs1|/@n + Loy (3.9)

and so uniformly for n=2 and 1<j<n—1
an<xjn) ~ an(ijrl,n)-

(h) Given any fixed r>1,

Ay 1
— 1~ 3.10
a, T(ay,) ( )

(i) Let 0<n<1. Uniformly for n>1, 0<|x|<ayn, and |x| = aj,
G <T(x) 1—M <G logg. (3.11)

n

() There exists a constant ¢ with 0<e<2 such that for n=1,
n

T(a,) < (-) ) (3.12)

an

(k) For 0<s<t<l,

()" <8< o
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(1) For |x|<1,
O (anx)(1 = |x)"? <n/ay. (3.14)

Proof. (a) These follow from Corollary 1.2(a), (b) in [8], Corollary 1.4(i), (1.35) in
[9], and Corollary 1.3(a), (b) in [10].

(b) These follow from Corollary 1.4 in [8], Corollary 1.5(1), (ii) in [9], and
Corollary 1.4(a) in [10].

(c) It follows from the formula of /;, and Corollary 1.3 in [8], Corollary 1.5(iii) in
[9], and Corollary 1.4(b) in [10].

(d) It follows from Lemma 2.6(b) in [13], Lemma 12.2(b) in [9, p. 134], and
Theorem 1.2(b) in [12].

(e)—(f) For (bl) case, these follow from (b1) condition, Lemma 5.1(c), and Lemma
5.2(c) in [8]. Otherwise, these follow from part of Lemma 3.2 in [9] and Lemma 2.2
in [10].

(g) These follow from (11.10) in [8, p. 521], (10.12) in [9, p. 111], (9.9) in [10,
p. 265], and the definition of ¥,,.

(h) It follows from Lemma 5.2(c) in [8], Lemma 3.2(v) in [9], and Lemma 2.2(v) in [10].

(1) It follows from the proof of Lemma 2.4(c) in [4].

(j) For (bl) case, since 7(x) is bounded, it follows from Lemma 5.2(b)
in [8]. Otherwise, it follows from Lemma 3.2(iii) in [9] and Lemma 2.2(viii) in [10].

(k) It follows from Lemma 5.1(b) in [8], Lemma 3.1(i) in [9], and Lemma 2.1(i) in
[10].

() We may assume x>0. Then by (2.2)

1 / 1 /
ﬁzg/ 1Q'(ant) dl;z/ Q@)
ap T Jo V1-—1¢ Ty V1—1¢2

2 Q(anx) (! 1,
> — dt = — LX)V 1 — x2. O
P, (TR g )Vl my

Lemma 3.2 (Lubinsky and Rabinowitz [14], Lubinsky [11]). Let we.«/. Uniformly
for 1<k<n

Piy (Xin)

pi,(xkn) S Q/(xkn)~

Proof. By (3.7), (3.8), (3.11), and (3.13), it follows from Lemma 4.3 in [11] and
Lemma 5.3 in [14]. O

Let j(x)eN be defined by

X = Xjal = min |y — Xial, xel.
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Lemma 3.3 (Damelin [1,2], Szabados [15]). Let we.oZ. Uniformly for xel and for
1<k<n and n= Ny,

n O(arllfo{)’ 0<OC<17
3 %: O(logn), 2=1,
— X — Xkn wel
kg0 270+ Gwm) o *>1

Proof. It follows from Lemma 6 in [15, p. 108], Lemma 4.1 in [1, p. 235], and Lemma
3.21in [2, p. 252]. O

We can now prove main estimates for our results.

Lemma 3.4. Let we .o/ and u(x) be an even and non-decreasing function.

(a) For large enough n>1 and xel,
Z O (Xpen)|x — x/m|llgn(x)wz(x)wiz(xkn)uil(xkn)
k=1

a,logn

—1/2 _
S (1= xl/an] + L) ™ Pl e, e<arszon

(b) For large enough n=1 and xel,

D W (W (v) S 1.
k=1

(¢) For large enough n=1 and x€l,

n
D = el (<02 (0w () S (11 = [l /a4 £6,)7 S log .
k=1

(d) For large enough n=1 and xel,

n
Z <D@1 (Xkn)|x — xk,,|l,fn(x)w2(x)w*2(x/m)
k:1 n

a 4);”1 (X), |x|<a2na
s(\l—|x\/an|+L5,,)_1/2—"logn n
n T2 (a,), |x|=as.
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Proof. (a) For xel, by (3.1), (3.2), (3.6), and (3.9)

Z O (Xen) X — X |l/%n (x) w? (x)14f2 (xkn)”il (Xkn)

kelj(x)=2,/(x)+2]n[l,n]

a
S Z Ql (xkn )anlln (an)Ll7] (xkn)
ke [i(x)—27+2) A 1]

Ay _ —-1/2
$7||sn(x)u l‘|Ll,(\X\<an(l+L5,,)) Z |1 — |Xkn|/ an + L] /
kelj(x)=2j(x)+2]n (1]

Ay - -1/2
~ llsn(x)u 1 (et zagy (11 = 1Xl/an] + £3,) 7"

and we have by (3.1)—(3.5), and Lemma 3.3,

Z Q' (Xpen)|x — xk,,|l,§n(x)w2 (X)W_z(xkn)”_l (Xkn)
k¢ [j(x)=24(x)+2]n [1n]
a _ Axy,
Sla a2 D suln)u ()=

Axkn

2d
S 2P S s, gty 0 o

- xkn

> aylogn

<lay*pa(x)w(x)| [l (o)™ M2, (i <an1-+6,)

_1pha,logn
(11 fxl/a| + Lo,) 2 EEE

—1
|| (26)u ||Lw(\x\<a,,(1+L5,,))'

(b) For large n>=1 and xel, by (3.6)

l,%n (x) w? (x) w2 (Xrn) < 1.
kelj(x)=2j(x)+2]n[l,n]

Case 1: O<x<%; By Lemma 3.3, (3.2),(3.3), and (3.5),

2 ()W (x) w2 ()
ke [j(x)=2j(x)+2]n [1n]
Axkn

a
< |Cl1/2pn 2 - Z 'P xkn |xkn|/an + Lén)l/z | |2
X — Xkn

ay Axk” 1
< — < <1.

|x — xk,,|2~ Pu(x)™
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Case 2: L<x<an; By (3.2), (3.3), and (3.5),

2’

> Lo (X)W (X)W (1)
ki) -2700+2 A 11

a Ax
Sl a0 7 3 a1 = bl + L)
— Xkn
12 Gy Ax,,
S (1= |xl/an) 1/2; D V() (1= Xl /1 + Lo,)'? ﬁ
— Akn

Then

> i) (1= Xl fan + L6,)"? xAxk,, Yy

| o xk”' [Xkn| <an, Xkl Zag,
3 3

so we have by (2.4), (3.8), (3.10), and (3.11),

1 ay(l 4 Loy) — az 1
DS Ss—
T(ay,) a,

2
ka,1‘>a2n (Cl@ - ag)
3 3

and by (2.4) and (3.9)

A n ‘72n1_ n
D0~ S0 vl + L) Al / / ’/“

Iwm‘ <a2n an
3

where x, = Xj)41, and x* == x;)_1,. Since by (3.9),

a, 1 _ ok _ _ 1/2
/%1 t/andt<n(l x/an)N n(l —x/ay) <n(l x/ay)

v (x=0? T @¥P(x) 4,1 -x/a)?” an
and by integration by parts,
e l—1t 1 n(l—x,/ay 1 1
/ /agd,s_+g+ —/—dt
0o (x—1) x an¥Pu(x) an) x—1t

1 —x/a,)"? 1
n(l —x/ay) n ogn’
an an

<1+
we have

A 1— 12
Z(l_lxknl/an-i-Lén)l Xhen 2$1+n( x/ay,) | logn

X — Xn | ap ay
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Therefore, for %<x<a§ by (3.11) and(3.12),

I, ()W ()W (Xkn)
k¢ [j(x)=2/(x)+2]n[1,n]

su—ummlﬂ%o+

an(1 — |x|/a,) "
n

<—xm»”+My7

dn dn

+1+ T'2(ay)

logn
n
<.
Case 3: |x| >a;§z; By (3.2)-(3.5),
l,%n ()W (X)W (Xkn)
k¢ [j(x)=24(x)+2] 0 [1,n]

= (11— [x|/an| + Lén)*‘/z% > () (1= [Xual fay + L5,) " _ AN

|X - xkn'2

= (11 = |xl/an + Lo) 21 S0+ Y

[Xen|<an — |Xkal Zan
3 3

/ t/an an 1 —t/a, “§+l/”§ dt
x—t ~n X—1 |y anJo x—1

a_ﬂ(l —a%/an +l+logan> <10gan

n\ x—a X a, n
3

Then by (3.9)

IYkn‘ <uﬂ

%}

~

and by (2.4), (3.11), and Lemma 3.3,

AXp,
Z<()27k2

[Xkn| = an k| = an ‘X - xk”|
3 3
a, n 12
< < (|1 — Lo .

Then, we have for |x|>an,
2

a Axy,
;n Z l‘Un(xkn)(l - |xkn|/an +L5n)l/27n

loga
ST (1= a4 Lon) 2.

2
|x — Xk
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Therefore, for |x| >a%, by (3.11) and (3.12),

2 ()W (x) w2 ()
KEH)-270 2l

I
<1 — |x|/ay + Lo, (%

+ (|1 = |x|/a +L5n)1/2>

So we have, for all xe/,

Z kn z(x/m) <l
(c) By (3.2)—-(3.5), and Lemma 3.3,

|x — xk,1|l,%n (x)w_z(xkn)wz(x)
ke [j(x)=24(x)+2]

<lap,w(x) 28 Z Ao
|x — Xk

a,logn
< lay2paw() 258

_1haylogn
< (1 = |x|/an| + L)~ '> 208"

and by (3.2) and (3.6)

Z X — Xpn| 2, (X)W 2 (e ) W2 (X)
ke li(x)—24(x)+2]

a,
< Z |x7xkn|sgn Tn(x)

kelj(x)=2,j(x)+2]
Ay —-1/2
$7(|1 - |x|/an|+L5n) .
Therefore, we have for xel,

D = gy, (0w Cx ) ()

_1na,logn
<1 = |x|/an| + Lo,)~"/> 08"
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(d) From ®a,(x) = |1 — |x|/a,|"* + T~'/*(a,), we have g (x) < T'/(a,) for xel.
n n
Then for xel and by (c),

Z q)il (Xpen) |2 — xkn|l,§n(x)w_2(xkn)w2 (x)
k=1 "

< Tl/z(an) Z |x — xkn|l,%n(x)w_2(xk,,)w2 (x)
k=1

_1)2anlogn
ST (@) (11 = x| fa| + Lo,) 288

On the other hand, we consider the case of |x| Sag. Then (cf. (¢))

D, (Xtn) X = Xt L, (X)W (Xpn) W (X)
kelj(x)—24(x)+2] n
<Py (x) > |x = Xpon |, (X)W (g ) WP ()
n kelj(x)—2,(x)+2]
_ _1na,logn
<@g ()(|1 - |xl/a,| + L3,) /P L OEn

n

Since Pa, (x)~ (1 — |x|/az,)"? for |x|<an(1 + L3,), we have (cf. (¢))

P, ()| = X B (X)W () 9 ()
k¢ li(x)-2j(x)+2] "

12 24n _ *1/2ﬂ
Slay 2w ()2 D (1 = il )™
4 B Ax
< (1 = |xl/an] + L6,) 1/2;" >0 = tal fan) ™ r];:k,J
Here,
_ Axy,
> (= lfan) P
K i(0)—24(x)+2) "
o Sralls)
< / Ut gy [2 (i) -,
0 x—1 X% [=x

a(14L3,) 1—¢ -1/2
+% ( /a2n) dt

*+a,(14+Ld,) I —x
2
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where X, = Xj11,, and x* == x;(;)_1,. Then for |x| <ag,

X (1 — \ —1/2 x, 1
/ %dtga fx*/az,q)*l/z/ ——dr
0 0

xX—1 x—t
<(1- x/azn)_l/2 log n,

X*+a,(14+L5,)
) (1= t/azy)" "

dt
x* t—x
* _1jp Xtan(I4Lo)
< (1 e _M> : )
2 am . P
<(1 = x/ay)"logn
and
ay(1+L3,) (1-— l/azn)_l/z
/MTW
2
1 an(1+L3y) "
- B B
“an(1 + Lon) —x/x*+an<21+L6n>(1 t/ax,) " dt
an(14L3,)
—doy 12
S—— —
Nan(l +L5n) —X(l t/azn) w
1/2
o (12l )
an(l + Lén) — X anm o
o * 1+ L3\ /2
S@(l _1+L5n) <1 X _M>
n an o ™
~(1 _x/a2n) 1/2
Therefore,

n

> Pa! (i) = il (0w ()0 (x)

=1
~1/2
oy logn | (L =x/az) 77, |x|<an
< (|1 = |x|/an| + Ldy) 1/28n 081 o 2
" '), |x[za
~1/2dnlogn ‘D%l(x)a x| <azy

S s P
ay), |X|=dop.
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4. Proofs

Proof of Theorem 2.2. From (b) of Lemma 3.4,

a1 0z, ) S WL, 0y

’Zl B (X)W () W? (X)
k=1

S HfWZHL%(I)
from Lemma 3.2 and (@) of Lemma 3.4,

Hn [/ 1) 0(x)l] 1, 1)

pS |VW2“| |Lm %)

D O (k) — Xkl () (k)W ()™ (510 )
k=1

L, (1)
S |lfW2“| |Lm (nAn

and from (c¢) of Lemma 3.4,

[ (x)w? o)l

D = xrally (w2 Cxa ) ()0 ()

k=1

S |V/’V2||L%(1)

Lo (D)
S|l

L, (1B

Therefore, we have (2.5), (2.6), and (2.8) and from (1.2) and (1.3), we have (2.7) and
29). O

Lemma 4.1. Let we.o/. For any polynomial Re Py, 1 with n large enough, we have

I(R(x) = Hu[R)(x))w*o(x)l| ., (1) S |IRW||L., Ba-

Proof. For any polynomial Re #,,_, and xel, from (c¢) of Lemma 3.4,

(R = Hu[R)(x))wo(x))|

n

= D20 = )y (R (i) (0)o()

k=1
<D I gy () R () 9 (x) ()
<IRW I, D 1% = Xtall ()W (xtn) W ()0 ()

1
SR, (11— |xl/an] + L3,) o) 2222 O

n
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Proof of Theorem 2.3. For xe/ and large enough n, by (2.3), (3.11), and (3.12),

1 —|x|/a,| + L6, 12p(x a,,lﬂ
( :

- T(an)l/zaﬂll#7 |x|<an/2
T T () (@) logn, x| Zan,

so(l)
and
_ _ a,logn
(11— Ix1/an] + L62) ™00 50 ()™ ()L, (412120, -
<(1 = |xl/al +L5,,)*1/20(x)""1nﬂ — o(1).

Therefore, for large enough n>1, 4, = o(1) and B, = o(1). For a given ¢>0, there
exists a polynomial R(x) such that (cf. [5, p. 180])

|(f (x) = RE)wu(x)| <e.
Then for large n>0, we have from Lemma 4.1 and (2.7),
107 (x) = Half 1w o)l 1y
<|I(F(x) = RE))W (I, (1) + (R = Ha[RIG)W? ()],
+ |[Half — R](X)WZU(X)HL,L 1)
<A+ DI = Rl oy + [IRW I, By,
<e+o(l), (4.1)
from (1.3), (2.8), and (4.1),
107 (x) = Hal 1 (x))w?o(x) ],
<N G = HlF 1w o), ) + 1HHs [ T )W o)
Se+o(1) + |l By
Se+o(l),
and from (2.5),
10 () = Ha 12 @)
<N (x) = R, 1y + [ Ha[f = RIW @I,

I = Rl oy
<e.
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Jim 1) = Hlf 1wl o S
Jim {17(0) = Ha 1)l oS¢
and

Jim (107G = Ha ol ) <6

Since ¢ is arbitrary, we have the results.

O
Lemma 3.4, for xel

|(R(x) = Hu[R)(x))w* (x)]

Proof of Theorem 2.4. Let R be any polynomial of degree <2n — 1. From (d) in

k=1

Z(x = X1, (X) R (310) W ()
< ‘ ’R’(x) di%(x)lvz (x)

Z |x — anlq%l (an)lin(X)W_z(an)W (x)
L., n

ap -1/2
S IR Pa?|l, (11 = [xl/an + L6,)7"

d)‘lnl (x)7 |X|<az,,,
T'%(a,), |x|>a.
Since for |x|<a,(1 + Ld,), by (2.4),(3.7), and (3.14),
[ ()]

=0/ (x)¥a(x)|1 — |x| /@y + L5,|"?|
O’ (x)(1 - |x|/ay),
<

x| <an
2
0'(x) T(lg”)v a%S |x| <a,(1+ Lo,)
< 2 b (x) s,
ap n Ay
we have for xel,

[Half = R (IS = R[],

+ 10 = RW I, 1y (11 = ¥/ an] + L32) " llsa (0|2, (wj<anioz6,)
SN = Rl oy (14 (11 = |xl/an| + L5,) " log n)

) L @, (x),
SN =R, o | 1+ (11 = [xl/an] + L34) " logn

‘X‘ <dy
n .
T1/2(an)7 |x‘>a2n

a,logn

n
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Therefore, we have for xel

|(f (x) = Ha[f1(x))w? ()]
< (%) = RO))W ()] + [(R = Ha[R)(x))w? (x)| + | Half — R](x)w? ()|

< (16 = Rl + LR @2, )
1 (pa,, , |x‘<a2n
x | 14 (|1 = |x|/an| + L8,) " logn
Tl/z 1 ) |x‘>a2n
ay
<Kion-1,0 (f7 Wz’;)
<I>an x), |x|<aam
x | 14 (|1 = |x|/an| + L8,) " logn . O
T1/2 7 |x‘>a2”l

Proof of Corollary 2.5.

1Tk f] - Lk, Sl < / KGO — Half)] dx
< = Hlf o)l o / ()20 (x) dx
< = Hl Do)l o

By Theorem 2.3, we have the result for ,[k; f] and by the same process, we have the
results for I,[k;f] and J,[k;f]. O

5. Applications: &, &, and 72 cases
5.1. Freud weight case

We consider Freud weights w :=exp(—Q) where Q:R—R is of polynomial
growth at infinity.

Definition 5.1. Freud class % : Let we.oZ on I = R and suppose that there exist 4> 1
and B>1 such that

A<ST(x)<B,xel +. (5.1)

Then we write we % .
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A typical example of the Freud weights is
wy(x) = exp(—|x|"), a>1, xeR.
Specially, the case of « = 2 is the Hermite weight.

Proposition 5.2. Let we Z. If A and B are the same as in (5.1), then

uB<a,jay<u'?, uell, 0). (5.2)

Proof. This is Lemma 5.2(b) [8, p. 478].

20
Corollary 5.3. Let we F. Let u(x) = (1 +|Q(x)|) and v(x) = (1 + |x)"1"3) with
ao<min{A,3/2}, where A is the same as in (5.1). Then for a continuous function f on R
with (2.11) we have

lim [|(/(x) = Ha[w?, f](x))w?0(x)[| = 0

n— oo

and for a continuous function f on R satisfying (2.11) and ||f'w?|| < oo,

lim {|(f(x) = Ha[w* f1)w* o), 1) = 0.

n— oo

Moreover, (2.12) and (2.13) hold under these assumptions.
Proof. Since for |x|<a,(1 4+ Ld,), by (2.4),
s ()" ()| ~ P ()|1 = [x| /@, + LS| 51

and for xeR and 0<f <1, by (3.7), (5.1), and (5.2),

(11— |xl/an] + L8,) " 2o(x) 221087

(11 = |x|/an| + L8,)"""* ay logn
2
(1+x))'3

a, logn
n

n
x| <apn,

oL g
(513 logn  |x[=ap,,

1
nd logn |x|<ap,

= o(1),

~

G-n3
nd V3logn |x|=ap,

we have 4, = o(1) and B, = o(1) for large enough n. Then we have the results by the
same process as in the proofs of Theorem 2.3 and Corollary 2.5. [
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5.2. Erdos weight case

We consider Erdos weights w == exp(—Q) where O : R— R is even and is of faster
than polynomial growth at infinity.

Definition 5.4. Erdos class &: Let wee/ on I =R and suppose that T(x) is
increasing in /+ = (0, co) with

lim 7(x)= o, T(0+):= hr{)l T(x)>1.
x—=>0+

Moreover, if we have
T()<C(O), x— (5.3)

for some positive constant C independent of x, then we write we &.

The archetypal examples of we & are

(1 Wia(x) = exp(—expi(|x])), xeR,

where o> 0, k is a positive integer, and exp, () = exp(exp(exp(---))) denotes the kth
iterated exponential.

@ was(x) = exp(—exp(log(4 + x°)%), xeR,

where A is a fixed but large enough positive number and B> 1.
For example for wy,,

-1

T(x)=Tra(x)=a

k
14+ x* Z
=1

and so (2.1) and (5.3) hold in the stronger form,

. Q)N _ . Tx)
B T(x)/ < o0x) ) =5 T og 0

J

o] x>0
=1

Proposition 5.5. Let we&. Let €>0. Then

an<Cn® and T(a,)<Cn’, n=l. (5.4)

Proof. This is Lemma 2.4 in [4].

Corollary 5.6. Let we&,. Let u(x) = Q'(x)* with A>1 and v(x) = 1. Then for a
continuous function f on R with (2.11) we have

Tim [[(7(x) = H[w?.f](x))w?u(x)]| = 0
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and for a continuous function f on R satisfying (2.11) and ||f'w?|| < oo,
Tim {[(£(x) = Hw? 1)), ) = O-

Moreover, (2.12) and (2.13) hold under these assumptions.

Proof. Since for |x|<a,(1 + Ld,), by (2.4), (3.7), and (5.4),

Is(x)u ™! ()] ~ Q' ()~ W (x)

n\'" 1 1-4
< |[— Tg(an)gn 2

an

1 —|x|/a, + Ls,|'?

and for xeR and 0<f <1, by (3.10) and(5.4),

a,T'/? (ay) logn

_ ~1/24nlogn o
(ll |x|/an| +L5n) n ~ a,ng(a”) logn
2 I
n3

x| <ag,

x| = apn

~

1
< anT3(a,;) log”sn71/3’
n3
11 |
we have 4, <n23™4 = o(1) and B,<n3 = o(1) for large n>1. Then we have the
results by the same process as in the proofs of Theorem 2.3 and Corollary 2.5. O

5.3. Exponential weight on (—1,1) case

Definition 5.7. Class of exponential Weights on (—1,1) &Z2: Let we.s/ on I =
(—1,1) and suppose that T'(x) is increasing in (0, 1) with

lim 7(x)>1

x—-0+

and that for some 4>2 and x close enough to 1,
A
1 —x2

Then we write we X 2.

T(x)=

The archetypal examples of we &X' P are
won(x) = exp(—(1 —x*)™), «>0, xe(-1,1)
or

Wia(x) = exp(—expe(1 — x%)7), k=1, a>0,xe(—1,1).
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Corollary 5.8. Let we §42. Let u(x) = (1 +|Q'(x)|) T3 (x) with 4> and v(x) =
T-'3(x). Then for a continuous function f on (—1,1) with (2.11) we have

lim [|(7(x) = Ha[w?,f1()w*u(x)|| = 0
and for a continuous function f on (—1,1) satisfying (2.11) and ||f'w?|| < oo,
Tim [[(£(x) = Haw? () w? o)l ) = O-

Moreover, (2.12) and (2.13) hold under these assumptions.

Proof. Since for |x|<a,(1 + Ld,), by (2.4), (3.7), and a,~1,
1
[sn(0)u ()] ~ Q' (%) T3 (x) W) |1 = |x|/ay + L5, [
< pl4

and for xe(—1,1) and 0< <1, by (3.10)—~(3.12),

_ a,logn _ L a,logn
(10 = el /@y + L3,) ™ 0(0) == == = (|1 = [l fa, + L6,) 2T 75 (00) ===
1
6[4” n
< % x| <ap,
% x| = apn,
n3
logn
~ 2 )
n3

1 2

we have 4,<n3 ¥ logn=o(1) and B,<n 3logn =o(1) for large n>1. Then
we have the results by the same process as in the proofs of Theorem 2.3 and
Corollary 2.5. [
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